58,560 research outputs found

    Valid and efficient formula for free energy difference from nonequilibrium work

    Get PDF
    Atomic force microscopes and optical tweezers afford direct probe into the inner working of single biomolecules by mechanically unfolding them.^1-15^ Critical to the success of this type of probe is to correctly extract the free energy differences between the various conformations of a protein/nucleic acid along its forced unfolding pathways. Current studies rely on the Jarzynski equality^16^ (JE) or its undergirding Crooks fluctuation theorem^17^ (CFT), even though questions remain on its validity^17-19^ and on its accuracy.^13,20-21^ The validity of JE relies on the assumption of microscopic reversibility.^17,18^ The dynamics of biomolecules, however, is Langevin stochastic in nature. The frictional force in the Langevin equation breaks the time reversal symmetry and renders the dynamics microscopically irreversible even though detailed balance holds true. The inaccuracy of JE has largely been attributed to the fact that one cannot sample a large enough number of unfolding paths in a given study, experimental or computational.^13,15^ Here I show that both of these questions can be answered with a new equation relating the nonequilibrium work to the equilibrium free energy difference. The validity of this new equation requires detailed balance but not microscopic reversibility. Taking into the new equation equal number of unfolding and refolding paths, the accuracy is enhanced ten folds in comparison to a JE study based on a similar but larger number of unfolding paths

    Glycerol Modulates Water Permeation through Escherichia coli Aquaglyceroporin GlpF

    Get PDF
    Among aquaglyceroporins that transport both water and glycerol across the cell membrane, Escherichia coli glycerol uptake facilitator (GlpF) is the most thoroughly studied. However, one question remains: Does glycerol modulate water permeation? This study answers this fundamental question by determining the chemical-potential profile of glycerol along the permeation path through GlpF's conducting pore. There is a deep well near the Asn-Pro-Ala (NPA) motifs (dissociation constant 14 microM) and a barrier near the selectivity filter (10.1 kcal/mol above the well bottom). This profile owes its existence to GlpF's perfect steric arrangement: The glycerol-protein van der Waals interactions are attractive near the NPA but repulsive elsewhere in the conducting pore. In light of the single-file nature of waters and glycerols lining up in GlpF's amphipathic pore, it leads to the following conclusion: Glycerol modulates water permeation in the microM range. At mM concentrations, GlpF is glycerol-saturated and a glycerol dwelling in the well occludes the conducting pore. Therefore, water permeation is fully correlated to glycerol dissociation that has an Arrhenius activation barrier of 6.5 kcal/mol. Validation of this theory is based on the existent in vitro data, some of which have not been given the proper attention they deserved: The Arrhenius activation barriers were found to be 7 kcal/mol for water permeation and 9.6 kcal/mol for glycerol permeation; The presence of up to 100 mM glycerol did not affect the kinetics of water transport with very low permeability, in apparent contradiction with the existent theories that predicted high permeability (0 M glycerol)

    Hopf Bifurcation and Chaos in a Single Inertial Neuron Model with Time Delay

    Full text link
    A delayed differential equation modelling a single neuron with inertial term is considered in this paper. Hopf bifurcation is studied by using the normal form theory of retarded functional differential equations. When adopting a nonmonotonic activation function, chaotic behavior is observed. Phase plots, waveform plots, and power spectra are presented to confirm the chaoticity.Comment: 12 pages, 7 figure

    Black hole entropy arising from massless scalar field with Lorentz violation induced by the coupling to Einstein tensor

    Full text link
    We have investigated quantum entropy of a static black hole arising from the massless scalar field with Lorentz violation induced by the coupling to Einstein tensor. Our results show that the coupled massless scalar field contributes to the classical Bekenstein-Hawking term in the black hole entropy. The corrected classical Bekenstein-Hawking entropy is not one quarter of the event horizon area of the original background black hole, but of a corresponding effective metric related to the coupling. It means that the classical Bekenstein-Hawking entropy depends not only on the black hole parameter, but also on the coupling which reduces Lorentz violation.Comment: 5 pages, no figure. Accepted by PLB for publicatio

    On the valence bond solid in the presence of Dzyaloshinskii-Moriya interaction

    Full text link
    We examine the stability of the valence bond solid (VBS) phase against the Dzyaloshinskii-Moriya (DM) interaction in the bipartite lattice. Despite the VBS is vulnerable against the antiferromagnetic interaction, for example in the Q-J model proposed by Sandvik, where the quantum phase transition occurs at J∗/Q=0.04J^*/Q = 0.04, we found that on the contrary the VBS is very stable against the DM interaction. The quantum phase transition does not occur until D/Q goes to infinity, where D is the strength of the DM interaction. The VBS in the ALKT model and the Haldane gap system also exhibit the same property.Comment: 5 pages and 5 figure

    Ageing and Temperature Influence on Polarization/Depolarization Current Behaviour of Paper Immersed in Natural Ester

    No full text
    Transformers play an important role in providing a reliable and efficient electricity supply and are one of the most critical equipments in electric power transmission and distribution systems. The most commonly used liquid in power transformers is mineral oil due to its low price and good properties. However the performance of mineral oil starts to be limited due to environmental consideration [1]. Natural ester insulating fluid offers fire safety, environment and insulation aging advantages over mineral oil and are found to be suitable for the use in transformer insulation system [1]. However, transformer owners require to assess the status of the cellulose insulation in transformer non-destructively. Polarization/depolarization Current (PDC) measurement [2] is one of the non-destructive techniques which have been used to achieve this aim. At the present, there are few publications about the PDC behaviour of natural ester-paper insulation, though the natural ester becomes more widely used in transformers. In this paper, the influence of ageing and temperature on the PDC behaviour of the paper immersed in natural ester and mineral oil were compared. Results show PDC technique can be used to assess the aging condition of the natural-ester paper insulation. The ageing and temperature have similar influence on the PDC behaviour of the paper immersed in natural ester and in mineral oil. The depolarization current of paper immersed in natural ester is lower than that immersed in mineral oil at the same test temperature. The depolarization current of the paper immersed in natural ester and mineral oil increase with the aging time increased. Therefore, the depolarization current can be used to indicate the aging status of natural ester-paper insulation
    • …
    corecore